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Boundary layer solutions are provided to study the time-mean heat transfer characteristics 
in a laminar flow in the vicinity of an axisymmetric stagnation point. The velocity of the 
oncoming flow is assumed to oscillate relative to the body. Different solutions are 
constructed for the small and high values of the reduced frequency parameter. Numerical 
solutions for the temperature functions are presented, and the wall values of the thermal 
gradients are tabulated. 
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I n t r o d u c t i o n  

One of the most significant studies of laminar boundary layers 
under the influence of a purely time-dependent free-stream 
oscillation was reported by Lighthill) His analysis employed 
a linearization for small oscillation amplitudes. Lin 2 considered 
the effect of finite amplitude oscillation on a flow field. Mori 
and Tokuda a investigated the heat transfer from an oscillating 
cylinder. Recently, Gorla et al. 4 examined the fluid flow 
characteristics in an oscillating laminar boundary layer in the 
vicinity of an axisymmetric stagnation point by means of a 
boundary layer approximation. They evaluated the amplitude 
and phase angle of the wall skin friction fluctuation for a wide 
range of the reduced frequency of oscillation. 

The present work deals with the time-mean heat transfer 
characteristics of the periodic boundary layer near an axisym- 
metric stagnation point on a circular cylinder, The analysis 
considers the case when the fluctuations in the external flow 
are produced by those of the oncoming stream. Figure 1 shows 
a cylinder described by r = a in cylindrical polar coordinates. 
The flow is axisymmetric about the z axis and also symmetric 
about the z=O plane. The stagnation line is at z=O, r=a. 
Different solutions are obtained for the small and high values 
of the reduced frequency parameter. The range of Reynolds 
numbers considered was from 0.01 to 100 for a Prandtl number 
of 0.7. Numerical solutions for the temperature functions and 
the Nusselt number are presented. 

The flow configuration described in this paper is applied in 
certain cooling and quenching processes. 

G o v e r n i n g  equa t ions  

Consider a laminar, incompressible, unsteady flow at an 
axisymmetric stagnation point on a circular cylinder. It is 
assumed that the properties of the fluid are constant, and 
viscous dissipation may be neglected. Figure 1 shows the flow 
model and the coordinate system. The governing equations 

under the boundary layer approximation are given by 
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The dimensionless temperature is 
(T,,-  T=). The boundary conditions are given by 

1. r=a: u=w=O, T=T, .  

2. r--*oo: u = U e = - A ( r - a 2 / r ) ( l  +e ~ )  

w= W,=2Az(1 +ee irn) 

T = T ~  

(i) 

(2) 

(3) 

(4) 

defined as 0 = (T- T=)/ 

(5) 

I: ,!z i l/ 
Figure 1 Coordinate system and flow development 
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When 8 is small compared with unity, u, w, and 0 may be 
expanded as 

u(r, z, t)=uo(r, z)+e, ux(r, z, t)+82u2(r, z, t )+  • • • 

w(r, z, t)=wo(r, z) + ewl(r, z, t) + e2w2(r, z, t) + . . . 

O(r, z, t)=Oo(r, z) + e, Ol(r, z, t )+ ~:~O2(r, z, t) + .... (6) 

Substituting Equation 6 into Equations 1, 2, and 3 and equating 
terms of the same order of e, we obtain sets of differential 
equations. Since the equations governing the velocity field are 
given by Gorla et al., 4 we will not repeat them here. For  the 
heat transfer problem, the zeroth-order equation is 

00o " ~00 ~0 {  00o'~ 
Uo-~-r +WO ~z  = r ~ r ~  r ~ r  ) (7) 

The boundary conditions for the zeroth-order equation may 
be written as 

r= a: Oo = 1 

r--, oo: 0 o ~ 0  (8) 

The first-order heat transfer equation is 

O01 O00 O01 O00 
c~t +u°-~r +ul  Or + w ° - ~ z  +wl  Oz 

O ( r  O01~ 
- r ~ r  ~ r , /  (9) 

The boundary conditions for the first-order equation are 

r = a :  01 =0  

r ~ o o :  01-*0 (10) 

C o o r d i n a t e  t r a n s f o r m a t i o n  a n d  s o l u t i o n  

We now define 

Uo = - A w l -  l/2f(q) 

Wo-- 2Af'(~)z 
u t = -- Aat l -  1/2g(ll)eitlt 
w 1 = 2Ag'(tl)e ira 

0 t = ~(tl)e iu~ 

(11) 

f~ 
o-~._ 

A 
Aa 2 

Re = - -  
2v 

Substituting the expressions in Equation 11 into the zeroth- 
order equations, we have 

o f "  + f " +  ReD +ff"- (f,)z] = 0 (12) 

~/0~ + [1 + (Re- Pr)f]0~ = 0 (13) 

The primes denote differentiation with respect to ~/only. The 
transformed boundary conditions are 

f ( 1 ) = f ' ( 1 ) = 0 ,  0o(0)=1 and f ' ( o o ) = l ,  
and 0 o ( ~ ) = 0  (14) 

The numerical solution for Equations 12 and 13 is well known 
(see Refs. 5, 6 and 7), so these details will not be repeated. 

After substituting the expressions in Equation 11 into the 
first-order Equation 9, we have 

r/~k" + [1 + (Re. Pr)f]~k' + (Re. Pr)00~ 

ia(Re- Pr) 
q,=o (15) 

2 

with transformed boundary conditions being given by 

$(1)=0,  $ ( ~ ) = 0  (16) 

Since Equation 15 contains the frequency parameter a, solutions 
are presented for small- as well as large-frequency cases. 

Smal l - f requencv case 

When a << 1, we assume that 

~O(~/) = ~Oo(q) + (ia)~O 1 (~/) + (ia):~O2(q) + • • • (17) 

From Equations 17 and 15 we have for the thermal problem: 

r/~,~ + [1 + (Re. P r ) f ] ~  + (Re. Pr)goO~ = 0  (18) 

~/~'~ + [1 + (Re. Pr)f]~b~ + (Re. Pr)ot 0~ 

- ( ~ ) 0 o = 0  (19) 

r/~b[ + [1 + (Re. Pr)f]~b~ + (Re. Fr)g20~ 

Notation 

A Constant used in Equation 4 
a Radius of cylinder 
C Amplitude of the fluctuating skin friction 
Ch Ampfitude of heat transfer fluctuations 
f, g Velocity profile functions 
P Pressure 
Re Reynolds number 
r Coordinate normal to the cylindrical surface 
T Temperature 
t Time 
u Velocity component in r direction 
w Velocity component in z direction 

z Coordinate parallel to the wall 
q Dimensionless cOordinate 
0, ~, Dimensionless temperature 
q5 Phase angle of heat transfer fluctuations 
~b b Phase angle of heat transfer fluctuations 
# Dynamic viscosity 
v Kinematic viscosity 
p Fluid density 

Frequency of oscillation 
a Reduced frequency parameter 
e Amplitude of oscillating velocity 

Subscripts 
w Conditions at the wall 

Conditions far away from the wall 
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Table 1 Values of Re-'/=0o(1 )and Re-m~'.(1 ) for Pr = 0.7 and various values of Re 

Re Ro-'/=O;(1 ) Re-'/'Oo(1 ) Re-'/=~,o(1 ) Ro-'/=~':~(1 ) Re- v'O:,(1 ) Re-'/=O;(1 ) 

0.01 - 2.105602 - 0.259662 0.0485484 - 0.00863075 41.308546 - 32.803059 
0.1 - 1.105455 - 0 . 2 1 2 1 2 2  0.0459780 -0 .00939101  7.523121 -3 .00634381 
1.0 - 0 . 7 1 5 8 8 0  -0 .194671  0.0462737 - 0 , 0 1 0 1 6 5 2  1.071 604 - 0 . 2 8 0 7 4 3  

10,0 - 0.570303 - O. 193794 0.0480040 - 0.01707189 0.124018 - 0.0259809 
100,0 - 0 . 5 2 0 0 3 6  - 0 . 1 8 4 7 4 2  0.0439125 - 0 . 0 0 9 5 8 8 1 5  0.0147153 - 0 . 0 0 2 9 0 1 9 4  

-100 

A 

0 12 18 (7 

. . . .  

I I I I 
6 24 30 

"801 . "  

-20 

Figure 2 Amplitude Ch and phase angle 4bh of the fluctuating 
component of heat transfer for Pr --- 0.7 and Re = 100 (- - -  Lighthill's 
results) 

r/S; + [1 + (Re. Pr)f]$~ + (Re. Pr)g30 ~ 

- ( - ~ ) ¢ 2 = 0  (21) 

~/qs~ + [1 + (Re- Pr)f]¢x~ + (Re. Pr)g,0~ 

- ( ~ ) 0 3 = 0 .  (22) 

etc. 
The boundary conditions are 

~(1)=0,  ~i(oo)=0 for i~>0 (23) 

Equations 18-22 are solved by means of the fourth-order 
Runge-Kutta numerical procedure on an IBM 370 computer. 
Re and Pr were treated as prescribable parameters. 

The numerical results for the thermal problem are obtained 
for Pr=0.7 while Re varied from 0.01 to 100. The values 0~(1), 
q~o(1), qx~(1), #~(1), ¢/~(1), qx;=(1) are tabulated in Table 1. The 
local Nusselt number for this case may be written as 

Nu=. Re~- 1/2 = - -  2 Rel/2{0~(1) + em*$'(1) + . . -  } 

= - 2Rei/2[0~(1) + eemi{~)(1)+ (i(7)$~ (1) 

+ (i,)2~,[(1) + (i(7)3~(1) 

+ (i(7)4~/~(1) + . . .  }] (24) 

For the low-frequency heat transfer fluctuation we may write 

q/'(1)-q/°(1)+(i(7)qti(1)+(i(7)2q/2(1)+(i(7)3q/3(1)+" " (25) 
0~(1) 0~(1) 

High- f requency  case 

For this case it may be shown that the large-frequency solution 
for $ is #oven by 

i(7 1 

P r f ' e  ~ [ 1 '~i/2 1 eS(~)) (26) 

where 

S(~) = --  2 x / / ~  ~ ( r ]  1/2 - -  1) + ~--Pr" Re f~l ~-dr/f 

and 

R = - 2 ~  ,~/~(r#ti2-1)- [ ~ ( ; -  1) + ~ in I/+ ~---~¢ f ;  ~ d , }  

The amplitude C~ and phase angle Sh of heat transfer 
fluctuations of order e are shown in Figure 2 for Re = 100 and 
Pr=0.7. 

Terms O(e 2) will be of interest, and steady streaming as in 
acoustics may be obtained.* This will be the subject matter of 
a future investigation. It is possible also that Equation 15 may 
have eigensolutions for certain values of ((7Re). In that case the 
expansions given by Equation 6 would be suberitical, and a 
new expansion should be developed for the critical region, 
which may yield interesting stability analysis. These aspects will 
be considered in a future investigation. 

R e s u l t s  a n d  c o n c l u d i n g  r e m a r k s  

In this paper, a study has been made of the response of the 
temperature field in the laminar boundary layer near an 
axisymmetric stagnation point on a circular cylinder as a result 
of the mainstream oscillation. Solutions are obtained for small 
as well as large frequencies under the assumption of small 
amplitude oscillation. Numerical solutions are presented for the 
temperature field and Nusselt number for a wide range of the 
Reynolds and Prandtl numbers. 

Figure 2 shows the amplitude and phase angle of heat transfer 
fluctuations of order ~. The results obtained in this paper 
indicate that the amplitude and phase advance of Nusselt 
number fluctuation decrease and increase, respectively, with the 
frequency of oscillation of the mainstream, and an asymptotic 
phase angle of 90 ° is attained at very large frequency for Re 
from 0.01 to 100. Figure 2 displays this result for Re-- 100. 
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